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Uncertainty

Let action A; = leave for airport ¢ minutes before flight
Will A; get me there on time?

Problems
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (traffic radio)
3) uncertainty in action outcomes (flat tire, etc.), etc.
Hence a purely logical approach either
1) risks falsehood: “A.; will get me there on time”
or 2) leads to conclusions that are too weak for decision making
“Aos will get me there on time if there's no accident on the
bridge and it doesn't rain and my tires remain intact etc.”

(A1440 might reasonably be said to get me there on time
but I'd have to stay overnight in the airport .. .)
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Uncertainty knowledge representation and reasoning

Nonmonotonic logic

Assume As; works unless contradicted by evidence

Issues: How to handle quantitation? Reasonable assumptions?
Rules with fudge factors:

Ags 03 At AirportOnTime

Sprinkler — 99 WetGrass

WetGrass —rg7 Rain

Issues: problems with combination, e.g., Sprinkler causes Rain?
Fuzzy logic handles degree of truth NOT uncertainty e.g.,

WetGrass is true to degree (.2
Probability

Given the available evidence,

Ao will get me there on time with probability 0.04

Qualitative vs. quantitative = Logic vs. probability <= Prob. logics
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective (posterior, conditional, Bayesian) probability
Probabilities relate propositions to one’s own state of knowledge
e.g., P(Ays|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current
situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence
e.g., P(Ags|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment A'B = «, not truth but nonmono-
tonic in nature)
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Why use probability?

The definitions imply that certain logically related events must have
related probabilities

E.g., PlaVvb)=Pla)+ P(b) — P(a AN D)

True

de Finetti (1931): an agent who bets according to probabilities that
violate these axioms can be forced to bet so as to lose money regard-
less of the outcome
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Axioms of probability

For any propositions A, B

1. 0< P(A4) <1

2. P(True) =1 and P(False) =0

3. PPAV B)=P(A)+ P(B)— P(ANB)

True

A A~B B

A probability is a measure over a set of events that satisfies three
axioms = probability theory is analogous to logical theory (axioms)
e.g., P(—a) =1 — P(a) is derived from the axioms
P(aVvb) = Pla)+ P(b)— P(aAb) (inclusion-exclusion principle)
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Syntax and semantics

Traditional probability theory has informal language
needs to be formalized for agents

Begin with a set {) — sample space
e.g., 6 possible rolls of a die
w € ()is asample point (outcome/possible world /atomic event /data)
A probability space or probability model is a sample space
with an assignment P(w) for every w € () s.t.
(1) 0 < Pw) <1
(2) 2 P(w) =1
eg., P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6
An event A is any subset of ()

P(A) = 2ipeny P(w)
e.g., P(dieroll < 4) = P(1)+P(2)+P(3) =1/6+1/6+1/6 =1/2

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 8 8



Random variables

A random variable is a function from sample points to some range

— Booleans (propositions)

e.g., Cavity (do | have a cavity?)
Cavity =true is a proposition, also written C'avity

— Discrete (finite or infinite)

e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition

Values must be exhaustive and mutually exclusive

— Continuous or real (bounded or unbounded)

e.g., I'emp=21.6; also allow, e.g., T'emp < 22.0

Arbitrary Boolean combinations of basic propositions
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Probability distribution

P induces a (prob.) distribution for any r.v. (random variable) X

gives values for all possible assignments
E.g., P(Odd=true) = P(1)+P(3)+P(5) =1/6+1/6+1/6 =1/2

The probability of a proposition Odd = true as the sum of the prob-
abilities of worlds in which it holds
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Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean r.v.s A and BB
event @ = set of sample points where A(w) = true
event —a = set of sample points where A(w) = false
event a A\ b = points where A(w)=true and B(w)=true

The sample points are defined by the values of a set of r.v.s

I.e., the sample space is Cartesian product of the ranges of the r.v.s
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Propositions

For Boolean r.v.s
sample point (possible world) = propositional logic model
e.g., A=true, B= false, or a N\ —b

A possible world is defined to be an assignment of values to all of the

r.v.s under consideration
— possible worlds are mutually exclusive and exhaustive, why??

Proposition = disjunction of atomic events (clausal form)
eg., (aVb)=(-aNb)V(aA-b)V(aAD)
= P(aVb) = P(—aAb)+ PlaN-b)+ PlaAb)

For any proposition ¢, the possible world (model) w where it is true

wE¢

Hint: (propositional) logic + probability = probabilistic logic
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Prior probability

Prior (unconditional probabilities) of propositions
e.g., P(Cavity =true) = 0.1
P(Weather = sunny) = 0.72
correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments
P(Weather) = (0.72,0.1,0.08,0.1)

(normalized, i.e., sums to 1)
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Joint probability distribution

Joint probability distribution for a set of r.v.s gives
the probability of every atomic event on those r.v.s
(i.e., every sample point)
P(Weather, Cavity) = a 4 x 2 matrix of values

Weather = |sunny rain cloudy snow
Cavity=true 0.144 0.02 0.016 0.02
Cavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Probability for continuous variables”

Express distribution as a parameterized function of value
P(X =x) = U[18,26](x) = uniform density between 18 and 26

!

0.1254

18 dx 26

Here I is a density; integrates to 1
P(X =20.5) = 0.125 really means

lim P(20.5 < X < 20.5 + dz)/dz = 0.125

dr—0
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Conditional probability

Conditional (posterior) probabilities
e.g., P(cavity|toothache) = 0.8
i.e., given evidence that toothache is all | know
NOT “if toothache then 80% chance of cavity”

Full joint (conditional probability) distribution for all of the r.v.s
P(Cavity|Toothache) = 2-element vector of 2-element vectors

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 8 16



Conditional probability

Defn. of conditional probability by unconditional probabilities
P(a AD)
P(b)

Product rule gives an alternative formulation

P(a Ab) = P(a|b)P(b) = P(bla)P(a)

P(alb) = if P(b) % 0

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)
(View as a 4 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule
P(Xy,....X,) =P(Xy,.... X 1) P(X,| Xq,..., X 1)

=P(X1,..., X0 2) P(Xyu 1| X1, ..., X0o) P(X,| X0, ..

=II_ \P(X;|Xy,..., X )
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Inference

Probabilistic inference is the computation of posterior probabilities for
query propositions given observed evidence
where the full joint distribution can be viewed as the KB
from which answers to all questions may be derived

Start with the joint distribution

toothache = toothache

catch | — catch\ catch| — catch

cavity | .108 | .012 .072| .008
= cavity | .016 | .064 144 | .576

For any proposition ¢, sum the atomic events where it is true

P(¢) = 2o P(w)

wwkEo
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Inference by enumeration

Start with the joint distribution

toothache — toothache

catch | = catchl catch| — catch

cavity | .108 | .012 072 .008
= cavity | .016| .064 144 | .576

For any proposition ¢, sum the atomic events where it is true
P(¢) = 2o P(w)

ww =

E.g.. P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution

— toothache

toothache

= catch| catch| — catch

catch

.108
.016

cavity

=1 cavity

For any proposition ¢, sum the atomic events where it is true

P(¢) = LiwpeP (W)

E.g., P(cavity V toothache) = 0.108 4+ 0.012 + 0.072 4 0.008 +
0.016 + 0.064 = 0.28
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Inference by enumeration

Start with the joint distribution

toothache — toothache

catch | = catchl catch| — catch

.008
576

Can also compute conditional probabilities

P(—cavity N toothache)

P(toothache)
0.016 + 0.064

P(—cavity|toothache) =
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Normalization

toothache = toothache

catch| = catch| catch| — catch
108/(|.012
016/ 1.064

Denominator can be viewed as a normalization constant o

P (Cuavity|toothache) = a P(Cavity, toothache)
= «a|P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)]
— [(0.108,0.016) + (0.012,0.064)]
— 2 {0.12,0.08) = (0.6,0.4)

cavity |

=1 cavity |

144 | .576

|dea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration contd.

Let X be all the variables. ASK
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X — Y — E
= the required summation of joint entries is done by summing out
the hidden variables:

P(YI[E=e)=aP(Y,E=e) = ozth(Y, E=e H=h)
The terms in the summation are joint entries because Y, E, and H

together exhaust the set of random variables

Problems
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries?
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

Cavity
decomposes into \J 00thache Catch

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P(W eather)

Cavity
Toothache Catch
Weather

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence is powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache
(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity
(2) P(catchl|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cavity
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence

Werite out full joint distribution using chain rule
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 4+ 2 + 1 = 5 independent numbers

In most cases, the use of conditional independence reduces the size
of the representation of the joint distribution from exponential in n
to linear in n

Conditional independence is our most basic and robust form of knowl-
edge about uncertainty
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Bayes’ rule

Product rule P(a A b) = P(a|b)P(b) = P(bla)P(a)

— Bayes' rule P(alb) = P(bg()bl)D(a)
or in distribution form
P(Y|X) = P(XIP(;)(];)O/) = aP(X|Y)P(Y)

Useful for assessing diagnostic probability from causal probability
Ef fect|Cause)P(Cause)
P(Ef fect)
E.g., let M be meningitis, S be stiff neck
P(sm)P(m) 0.8 x 0.0001
P(s) N 0.1

P(Cause|E f fect) = il

= (0.0008

P(ml|s) =
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Naive Bayes

Bayes' rule and conditional independence

P (Cavity|toothache A catch)
= aP(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model (Bayesian classifier)

P(Cause, Ef fecty, ..., Ef fect,) = P(Cause)ll,P(Ef fect;|Cause)

j t 7 Y N

Total number of parameters is linear in n
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Example: Wumpus World

14 2.4 3.4 )
13 2,3 33 43
12 ) 32 42
B

OK

i 2.1 3,1 71
B
OK OK

P =true iff [i, j] contains a pit

B;j =true iff [i, j] is breezy
Include only B 1, By 2, B> in the probability model
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Specifying the probability model

The full joint distribution is P(P, 1, ..., Py, By 1, B12, Boy)

Apply product rule: P(5 1, By o, Boy | Pra, ..., Piy)P(Pry, ... Py
(Do it this way to get P(FE f fect|Cause))

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(Piy,...,Py) =11 P(P) = 0.2" x 0.8157"

for n pits
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Observations and query

We know the following facts:
b= _119171 /\ 51?2 A\ b271
known = P11 N\ P12 A\ P21

Query is P (P, 3|known, b)
Define Unknown = F;;s other than P, 5 and K nown

For inference by enumeration, we have

P (P, 3|known,b) = a2ynknownP (P13, unknown, known, b)

Grows exponentially with number of squares
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Using conditional independence

Basic insight: observations are conditionally independent of other
hidden squares, given neighboring hidden squares

A———oad_—_—_—Jada__—__—Jai__
[
\

N OTHER

Define Unknown = Fringe U Other
P (0| P, 3, Known, Unknown) = P(b| P, 3, Known, Fringe)

Manipulate the query into a form where we can use this
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Using conditional independence®

P(P,slknown,b) =a > P(P 3, unknown, known,b)

unknown

= a Y. PP 3, known,unknown)P (P 3, known, unknown)
unknown

= a Y. Y P(blknown, P, 3, fringe, other)P (P, 3, known, fringe, other)

fringe other

= a Y. Y P(blknown, P, 3, fringe)P (P 3, known, fringe, other)

fringe other

= a Y. P(blknown, P, 3, fringe) > P(Py3, known, fringe, other)

fringe other

= a Y. P(blknown, P, 3, fringe) > P(P3)P(known)P(fringe)P(other)

fringe other

= a P(known)P(P3) > P(blknown, P, 3, fringe)P(fringe) > P(other)

fringe other

= o'P(P3) X P(blknown, P, 3, fringe)P(fringe)

fringe
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Using conditional independence

i T3 T3 T3 T3
T2 22 T2 22 T2 22 T2 22 T2 22
B B B B B

OK . OK ‘ OK OK ‘ OK .

71 2.1 31 T 21 31 1 2.1 31 T 21 31 1 2.1 31
B B B B B
OK OK OK OK OK OK OK OK OK OK
0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

P (P 3|known,b) = ' (0.2(0.04 4 0.16 + 0.16), 0.8(0.04 + 0.16))
(0.31,0.69)

Q

P (P s]known,b) ~ (0.86,0.14)
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Bayesian networks

BNs: a graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

alias Probabilistic Graphical Models (PGMs)

Syntax
a set of nodes, one per variable
a directed acyclic graph (DAG, link — “directly influences”)
a conditional distribution for each node given its parents
P(X;|Parents(X;))

In the simplest case, conditional distribution is represented as
a conditional probability table (CPT)
giving the distribution over X, for each combination of parent values
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Example: Bayesian networks

Topology of the network encodes conditional independence assertions

Toothache @

Weather is independent of the other variables

T'oothache and C'atch are conditionally independent given Cavity
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Example: burglary network

I'm at work, neighbor John calls to say my alarm is ringing, but neigh-
bor Mary doesn't call. Sometimes it's set off by minor earthquakes.
Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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Example: burglary network

Burglary
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P(B)

.001

Al PO
T 90
F .05

Earthquake

P(E)

.002

B E P(A)
T T 95
T F 94
F T 29
F F .001

>

P(M)

i

10
.01

38



Compactness

A CPT for Boolean X, with & Boolean parents has

2" rows for the combinations of parent values @

Each row requires one number p for X, =true }ZA‘I
(the number for X, = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete network requires O(n - 2%) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution
For burglary net, 1 + 1+ 4+ 2+ 2=10 numbers (vs. 2° — 1 = 31)

In certain cases (assumptions of conditional independency), BNs make
O(2") = O(kn) (NP =P 1)
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Global semantics™

Global semantics defines the full joint distribution

as the product of the local conditional distributions @
P(z1,...,x,) = 1I]_, P(x;|parents(X;)) ﬁ
eg., PGAmMAaN—bA—e) @ @
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Global semantics™

Global semantics defines the full joint distribution

as the product of the local conditional distributions @
P(z1,...,x,) = 1I]_, P(x;|parents(X;)) ﬁ
eg., PGAmMAaN—bA—e) @ @

= P(jla)P(m|a)P(a|-b, ~e)P(—b)P(—e)
0.9 x 0.7 x 0.001 x 0.999 x 0.998
0.00063

Q
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Local semantics*

Local semantics: each node is conditionally independent
of its nondescendants (Z, ;) given its parents (U; in the gray area)

Theorem: Local semantics < global semantics
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Markov blanket™

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Algorithm: a series of locally testable assertions of conditional inde-
pendence guarantees the required global semantics

1. Choose an ordering of variables X, ... X,
2. Fori=1ton
add X, to the network

select parents from X, ..., X, ;| such that
P(X;|Parents(X;)) = P(X;| X1, ..., Xi_1)

This choice of parents guarantees the global semantics:

P(X,,....X,) = 1l P(X;| X, .... X;_1) (chain rule)
= '\ P(X,|Parents(X;)) (by construction)

Each node is conditionally independent of its other predecessors in
the node (partial) ordering, given its parents
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Example: burglary network

Suppose we choose the ordering M, J, A, B, E
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Example: burglary network

Suppose we choose the ordering M, J, A, B, E

P(JIM) = P(J)? No
P(A|J, M) = P(A|.J)? P(A|J, M) = P(A)?
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Example: burglary network

Suppose we choose the ordering M, J, A, B, E

N>

Burglary

(J|M) = P(J)? No
(A|J, M) = P(A|.))? P(A|J, M) = P(A)? No
(B|A, J, M) = P(B|A)?
<

P
P
P
P(B|A, J, M) = P(B)?
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Example: burglary network

Suppose we choose the ordering M, J, A, B, E

O

M) = P(A]J)7 P(A|J,M)= P(A)? No
A, J, M) = P(B|A)? Yes

A, J, M) = P(B)? No

B, A, J,M)= P(E|A)?

B, A, J,M)= P(FE|A, B)?
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Example: burglary network

Suppose we choose the ordering M, J, A, B, E

Burglary
Earthquake
(J)? No

M) = P(A|J)? P(A|J,M)= P(A)? No
A, J, M) = P(B|A)? Yes

A, J M) = P(B)? No

B, A, J, M)=P(E|A)? No

B, A, J M)= P(FE|A, B)? Yes

=
]
~

) )

~

T WU TYT
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Example: burglary network

Burglary
Earthquake

Assessing conditional probabilities is hard in noncausal directions
The network can be far more compact than the full joint distribution
But, this network is less compact: 1 +2+4+2+4+4=13

(due to the ordering of the variables)
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Probabilistic reasoning™

e Exact inference
enumeration
variable elimination

e Approximate inference*
stochastic simulation
Markov chain Monte Carlo
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Reasoning tasks in BNs (PGMs)#

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge =empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=¢) = P(X,|E=¢)P(X,|X,,E=¢)

Optimal decisions: decision networks include utility information
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation/Causal inference: why do | need a nucleic acid detection
(for coronavirus)?
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Inference by enumeration

A slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation

Simple query on the burglary network

P(B|j,m) 2

~ (B j.m)/Pli.m) .\,‘C/S{@
=aP (B, j,m)

:()426 Za P(B,G,Cl,j,m> @ @

Rewrite full joint entries using product of CPT entries
P(Bj, m)

=« 2. 2., P(B)P(e)P(a|B,e)P(jla)P(m]|a)

= aP(B) 2. P(e) 2, P(a|B,e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time
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Enumeration algorithm?

def ENUMERATION-ASK(X,e,bn)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) < a distribution over X, initially empty
for each value z; of X do
Q(z;) <~ ENUMERATE-ALL(vars,e;,)

where e, is e extended with X = z;

return NORMALIZE(Q(X)) // a distribution over X
def ENUMERATE-ALL(vars,e)
if EMPTY?(vars) then return 1.0
V< FIRST(vars)
if V'is an evidence variable with value v in e
then return P(v | parents(V))x ENUMERATE-ALL(REST(vars),e)

else return >, P(v | parents(V))x ENUMERATE-ALL(REST(vars),

where e, is e extended with V = v
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Evaluation tree

Summing at the “4" nodes

P(—alb~e)

P(jla) P(j| ma) P(jla) P(j| ma)
90 05 .90 05
O O O O
P(m|a) P(m|—a) P(m|a) P(m|=a)
70 .01 .70 01
O O O O

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of e
improved by eliminating repeated variables
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= aP(B) 2 Ple) 2 P(&!B ¢) (j!a)P(m\ )

)24 (@\Bfi) (HM@)
)2 P(a|B,e)f(a)far(a)
€§ZafA(a b,e)fi(a)fula)
(

Jaslb.e) (sum out A)
b) (sum out F)
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Variable elimination: Basic operations

Summing out a variable from a product of factors
move any constant factors outside the summation
add up submatrices in the pointwise product of remaining factors

ipfiX oo X fe=fix oo X fiday fir X o X fro=fix oo X fix fx
assuming f1,..., f; do not depend on X

Pointwise product of factors /| and /5

filxy, i,y U)X foYry e oo Yky 215 - - - 21)
= [(T1,- T YL, e Yk 21y - -5 21

e.g., fila,b) X fo(b,c) = f(a,b,c)
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Variable elimination algorithm?

def ELIMINATION-ASK(X,e,bn)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

factors <[]
for each varin ORDER(vars) do

factors < [MAKE-FACTOR(V, e)] + |factors

if V'is a hidden variable then factors< Sum-OuT(V, factors)
return NORMALIZE(POINTWISEPRODUCT(factors))
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Irrelevant variables*

Consider the query P(JohnCalls| Burglary = true)

P(J|b) = ozP(b);P(e)%P(a\b, e)P(J]| ZP (m]a) ﬁ
Sum over m is identically 1; M is irrelevant to the query @ @

Theorem: Y is irrelevant unless YV € Ancestors({ X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X} UE) = { Alarm, Earthquake}
so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause

KBs)
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Irrelevant variables*

Defn: moral graph of BN: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the
moral graph

Theorem: Y isirrelevant if m-separated from X by E @ @
For P(JohnCalls|Alarm =true), both (A)
Burglary and Farthquake are irrelevant 0 @
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Complexity of exact inference

Singly connected networks (or polytrees)

— any two nodes are connected by at most one (undirected) path

— time and space cost of variable elimination are O(d"n)

Multiply connected networks
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

0.5 0.5 0.5 0.5

1. AvBv_C
2.CvDv ~A
3. BvCv-~D
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Inference by stochastic simulation*

|dea
1) Draw N samples from a sampling distribution S

2) Compute an approximate posterior probability P
3) Show this converges to the true probability /
Methods @

— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— Markov chain Monte Carlo (MCMC)
sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network

Direct sampling from a network that has no evidence associated
(sampling each variable in turn, in topological order)

def PRIOR-SAMPLE(bn)

X <—an event with n elements
for each variable X; in X;,..., X, do

x|i| - a random sample from P(X; | Parents(X;))
return x // an event sampled from the prior specified by bn

inputs: bn, a BN specifying joint distribution P(X;, ..., X,) P(X,,...

, A
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Example: prior sampling

P(C)

S0
PR|C)

@!
@!

P(S|C)
NCO NG L
F| .50 F| 20

—
~

S R[P(W|S,R)
T T 99
T F 90
F T .90
F F .01
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Example: prior sampling
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Example: prior sampling

P(C)

S0
PR|C)

@!
@!

P(S|C)
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Example: prior sampling

C |P(S|C)
T | .10
F| .50
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Example: prior sampling

C |P(S|C)
T | .10
F| .50
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Example: prior sampling

C |P(S|C)
T | .10
F| .50
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Example: prior sampling

C |P(S|C)
T | .10
F| .50
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = 1I,_  P(z|parents(X;)) = P(x; ... x,)
I.e., the true prior probability

E.g., Sps(t, f.t,t) =0.5%0.9x 0.8 0.9=0.324 = P(t, f,,1)

Let Npg(xy...x,) be the number of samples generated for event
Lly---ydp
Then we have

lim f)(ajl, ..., xy) = lim Npg(xq,...,x,)/N

N—00 N—00
= SPS(ZUl,...,ZCn)
= P(xy...x,)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(x,...,x,) ~ Plzi...x,)
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Rejection sampling

P(X|e) estimated from samples agreeing with e

def REJECTION-SAMPLING(X,e,bn, N)
inputs: X, the query variable
e, observed values for variables F
bn, a BN
N, the total number of samples to be generated
local variables: (', a vector of counts for each value of X, initially zero
for j=1to N do
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then // do not match the evidence
Clj] <= Clj]+1 where z; is the value of X in x
return NORMALIZE(C) // an estimate of P(X|e)
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Example: rejection sampling

Estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =1rue and 19 have Rain = false.

A

P(Rain|Sprinkler =true) = NORMALIZE((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure
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Rejection sampling contd.

P(X|e) = aNpg(X, e) (algorithm defn.)
= Nps(X, e)/Npg(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X]|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables
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Likelihood weighting

ldea

— fix evidence variables
— sample only nonevidence variables
— weight each sample by the likelihood it accords the evidence
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Likelihood weighting

def LIKELIHOOD-WEIGHTING(X,e,bn, N)
inputs: X,e, the query variable,observed values for variables £
bn,N, a BN, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X', initfally 0

for j=1to N do
X, w4 WEIGHTED-SAMPLE(bn,e)
Wj] < W1j] + w where x; is the value of X in x
return NORMALIZE( W[X])
def WEIGHTED-SAMPLE(bn,e)
X <— an event with n elements from e; w<1
for =1 to ndo
if X, is an evidence variable with value z; in e
then w+ w x P(X;= w; | Parents(X;))
else x[i] <—a random sample from P (X, | Parents(X;))
return x, w
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Example: likelihood weighting

P(C)
.50

C |PS|CO) C [PR[C)
T| .10 T| .80
F| .50 F| 20
T i,
S R[P(W|S.R)
T T| .99
T F| .90
F T| .90
F F| .01

w = 1.0
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Example: likelihood weighting

C |P(s|C)
T| .10
F| .50
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Example: likelihood weighting

C |P(s|C)
T| .10
F| .50
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Example: likelihood weighting

C |P(s|C)
T| .10
F| .50

w=1.0x0.1
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Example: likelihood weighting

C |P(s|C)
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w=1.0x0.1
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Example: likelihood weighting

C |P(s|C)
T| .10
F| .50

w=1.0x0.1
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Example: likelihood weighting

C |P(s|C)
T| .10
F| .50

P(©)

.50

C [P(R|C)
T| .80
F| .20

S RI[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

w = 1.0x0.1x0.99 = 0.099
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Likelihood weighting contd.

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = Hizlp(zi\parents(Zi))
Note: pays attention to evidence in ancestors only

— somewhere “in between” prior and
posterior distribution (Sprinkder) (Rain )

Weight for a given sample z, e is
w(z,e) = I | P(e;|parents(E;))
Weighted sampling probability is
SWS(Z, e)w(z, e)
= HizlP(zi\parents(Z,;)) II", P(e;|parents(E;))
— P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Inference by Markov chain Monte Carlo*

“State” of network = current assignment to all variables
= the next state by making random changes to the current state

Generate the next state by sampling one variable given Markov blanket
recall Markov blanket: parents, children, and children’s parents
Sample each variable in turn, keeping evidence fixed

Specific transition probability with which the stochastic process moves

from one state to another
defined by conditional distribution given Markov blanket of the

variable being sampled
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MCMC Gibbs sampling

def MCMC-GiBBS-ASK(X,e,bn,N)
local variables: C', a vector of counts for each value of X, initially zero
/. the nonevidence variables in bn
X, the current state of the network, initially copied from ¢

19%

initialize x with random values for the variables in Z
for k=1to N do // Can choose at random
choose any variable Z; from Z according to any distribution p(7)
set the value of Z; in x by sampling from P(Z;|mb(Z;)) // Markov blapket
Clj] = C[j] + 1 where x; is the value of X in x
return NORMALIZE( ()

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 8 86



Example: Markov chain

With Sprinkler =true, WetGrass =true, there are four states

p

A

) )

<

v q
=«
=<

)

V

Q
O

Wander about for a while
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Example: Gibbs sampling

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample C'loudy or Rain given its Markov blanket, repeat
Count number of times FRain is true and false in the samples

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

A

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of C'loudy is
Sprinkler and Ramn o)
Markov blanket of Rain is .@
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows
P<x”mb<X7>) - P<ZC;‘parent‘s(Xi))HZjECiz,ildre7z(X¢)P<Zj‘par@ntS<Zj>>

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large
P(X;|mb(X;)) won't change much (law of large numbers)
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Approximate inference

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW (Likelihood Weighting), MCMC (Markov

chain Monte Carlo):
— LW does poorly when there are lots of (downstream) evidence

— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous

variables
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Dynamic Bayesian networks™

DBNs are BNs that represent temporal probability models
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem
Notation: X, = X, X .1,..., X 1, X,

Xy, E; contain arbitrarily many variables in a replicated Bayes net
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Hidden Markov models

HMMs: single-(state) variable DBNs
every discrete DBN is an HMM

(combine all the state variables in the DBN into a single one)

RO

\ V4

N /

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each

DBN has 20 x 2% =160 parameters, HMM has 2°V x 22 ~ 10!?
(analogous to BNs and full tabulated joint distributions)
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X, depends on bounded subset of X,

First-order Markov process: P (X,| X, ) = P(X;|X; 1)
Second-order Markov process: P (X;| X, 1) = P(X,|X; 5, X; )

N N DD DD
— B
R s o O Gy B o e

Sensor Markov assumption: P(E,;| X, Ey, 1) = P(E,|X})

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all ¢
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Example: Markov processes

R; 4 P(R;)
t 0.7
1 03
Rain Rain
—1 t
R; | P(U;)
t 09
f 02

Rain ol

First-order Markov assumption not exactly true in real world

Possible fixes

1. Increase order of Markov process
2. Augment state, e.g., add T'emp,, Pressure,
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HMMs

X, is a single, discrete variable (usually E; is too)

Domain of X;is {1,...,5}

Transition matrix T;; = P(X,=j| X, | =1), e.g, (0.7 0.3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(¢;| X, =1)

e.g., with Uy =true, O = (069 002)

Forward and backward messages as column vectors

.
fl:t—i—l — CI4()154—111 fl:t
bii1: = TOg1bgioy

Forward-backward algorithm needs time O(5%¢) and space O(S?)
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Inference tasks in HMMs

Filtering: P(X,|eq)
belief state—input to the decision process of a rational agent

Prediction: P (X, |e;;) for & > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P (X |e ;) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(x;./|e)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm
P(Xii1lerir1) = flewr, P(X¢lers))

P(Xt+1|61:t+1) — P(Xm—l‘el:ta et+1)
= aP(e1]Xi1, e1)P(Xyp]ers)
— ()zP(et+1‘Xt+1>P<Xt+1‘elit>

|.e., prediction + estimation. Prediction by summing out X;

P(Xt+1\e1:t+1> — @P<et+1‘Xt+1)EXtP<Xt+1‘Xt7 el:t>P<Xt|el:t)
— Oép(etﬂ|Xt+1)2xtP(Xt+1|Xt>P(Xt\elzt>

fl:t—l—l = FORWARD(let, et_|_1) where fl:t = P(thel;t)
Time and space constant (independent of #)
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Inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable
elimination

Largest factor is O(d"""), update cost O(d" ")
(cf. HMM update cost O(d*"))

Approximate inference by MCMC (Markov chain Monte Carlo) etc.
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Causal Inference*

Questions

— Observations: “What is we see A?" (What is?)
Py [ A)

— Actions: “What if we do A?" (What if?)
P(y | do(A))

— Counterfactuals: “What if we did things differerently?” (Why?)
P(yx | A)

E.g., recall C(limate)-S(prinkler)-R(rain)-1 (etness)

“Would the pavement be wet HAD the sprinkler been ON?"
(P(S|C)=1)

Find if P(Ws_1=1)=P(W =1]|do(S=1))

Can drive counterfactuals from a model
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Graphical representations

e Observations — Bayesian networks
e Actions — Causal Bayesian networks
e Counterfactuals — Functional causal diagrams

Hints

— Can reduce the action questions to symbolic calculus

— Can be estimated in polynomial time, complete algorithm (with
the independence in the distribution)
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Probabilistic programming*

Probability models: defined using executable code in any program-
ming language that incorporates a source of randomness

= Programs as probability models

<= probabilistic programming language (PPL)

— all of the expressive power of the underlying language

Computationally universal: they can represent any probability distri-
bution that can be sampled from by a probabilistic Turing machine
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Generative program

def GENERATE-IMAGE(())
letter + GENERATE-LETTER(10)
return RENDER-NOISY-IMAGE(letter, 32,128)
def GENERATE-LETTER(\)
n ~ Poisson(\)
for =1 ton do
letter ~ UNIFORM-CHOICE({ a,b, ¢, - -})
return [etter
def RENDER-NOISY-IMAGE(letter, width, height)
clean-image < RENDER(letter,width,height,text-top=10,text-left=10)
noisy-image < | |
noise-variance ~ UNIFORM-REAL(0.1,1)
for row =1 to width do
for col =1 to height do
noisy-image|[row, col] ~ N (clean-image[row, col],noisy-variance)

return noisy-image
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Example: reading text

The program that reads degraded (smudged or blurred) text (or
CAPTCHASs), i.e., optical character recognition
— invoking GENERATE-IMAGE 9 times

S reed  [1bgz Cebidan, o [ocfiwe
z : op
T B
RErepe BTN
sian:ia £
pohes igune
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Probabilistic logic*

Bayesian networks are essentially propositional:
— the set of random variables is fixed and finite
— each variable has a fixed domain of possible values

Probabilistic reasoning can be formalized as probabilistic logic

First-order probabilistic logic combines probability theory with the
expressive power of first-order logic
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First-order probabilistic logic

Recall: Propositional probabilistic logic
— Proposition = disjunction of atomic events in which it is true
— Possible world (sample point) w = propositional logic model
(an assignment of values to all of the r.v.s under consideration)
— w [= ¢: for any proposition ¢, the w where it is true
— probability model: a set () of possible worlds with a probability
P(w) for each world w
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First-order probabilistic logic

FOPL

e Probability of any first-order logical sentence ¢ as a sum over
the possible worlds where it is true
P(Cb) - Zw:w\C)P(w)
e Conditional probabilities P(¢|e) can be obtained similarly
ask any question from the probability model
= (first-order) belief networks

Problem: the set of first-order models is infinite
— the summation could be infeasible
— specifying a complete and consistent distribution over an infinite

set of worlds could be very difficult

Analogous to the method of propositionalization for FOL
e.g. relational probability models (RPMs)
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Other approaches to uncertain reasoning

e Nonmonotonic reasoning
e Rule-based methods

e Dempster-Shafer theory
e Possibility theory

e Fuzzy logic

e Rough sets
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